PERMUTABILITY OF MINIMAL SUBGROUPS AND p-NILPOTENCY OF FINITE GROUPS

BY

GUO XIUYUN*

Department o] Mathematics, Shanxi University Taiyuan, shanxi 030006. PR China e-mail: gxy@mail.sxu.edu.cn

AND

K. P. SHUM**

Department of Mathematics, The Chinese University of Hong Kong Shatin, N.T., Hong Kong, P.R. China (SAR) e-maih kpshum@math.cuhk, edu.hk

ABSTRACT

In this paper it is proved that if p is a prime dividing the order of a group G with $(|G|, p - 1) = 1$ and P a Sylow p-subgroup of G, then G is p-nilpotent if every subgroup of $P \cap G^{\mathcal{N}}$ of order p is permutable in $N_G(P)$ and when $p = 2$ either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ of order 4 is permutable in $N_G(P)$ or P is quaternion-free. Some applications of this result are given.

^{*} The research of the first author is supported by a grant of Shanxi University and a research grant of Shanxi Province, PR China.

^{**} The research of the second author is partially supported by a UGC(HK) grant #2160126 (1999/2000). Received August 31, 2001

1. **Introduction**

All groups considered in this paper are finite. The relationship between the properties of minimal subgroups of a group G and the structure of G has been extensively studied by a number of authors (for example, see [ABP], [BG], [BU] and [GS]). A well known result is a lemma by It6 [H, p. 435], which states that a group G is p-nilpotent if every element of G of order p lies in $Z(G)$ and, when $p = 2$, every element of G of order 4 also lies in $Z(G)$, where p is a prime dividing the order of a group G .

Buckley showed in 1970 that a group G of odd order is supersolvable if all minimal subgroups of G are normal in G [BU]. Since then, there are a number of papers in the literature dealing with the generalizations of this result. In this paper, we focus on the p-nilpotence of groups which relates with Burnside's wellknown theorem for p-nilpotence, that is, if p is a prime dividing the order of a group G and P is a Sylow p-subgroup of G such that P is contained in the center of its normalizer, then G is p -nilpotent.

Inspired by the above Burnside's theorem and It6's lemma, one might wonder whether a group G is p-nilpotent if every element of G with order p lies in the center of $N_G(P)$ and every element of G with order 4 is also in the center of $N_G(P)$ when $p = 2$, where P is a Sylow p-subgroup of G. Concerning this aspect, Ballester-Bolinches and Guo have recently given an answer to this question [BG]. They proved the following result.

THEOREM A ([BG, Theorem 1 and Theorem 2]): *Let p be a prime dividing the* order of a *group G and let P be a Sylow p-subgroup of G. If every element of* $P \cap G'$ with order p lies in the center of $N_G(P)$ and when $p = 2$ either every *element of P* \cap *G' with order 4 lies in the center of N_G(P) or P is quaternion-free* and $N_G(P)$ is 2-nilpotent, then G is p-nilpotent, where G' is the commutator *subgroup of G.*

Now recall that a subgroup H of a group G is permutable (or quasinormal) in G if $HK = KH$ for any subgroup K of G. It is clear that permutability is a weak form of normality. Let us denote by $G^{\mathcal{N}}$ the nilpotent residual of a group G. Since $G^{\mathcal{N}} \leq G'$, we may ask whether the group G is p-nilpotent or not if every subgroup of $P \cap G^{\mathcal{N}}$ with order p is permutable in $N_G(P)$ and, when $p = 2$, every cyclic subgroup of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$, where P a Sylow p -subgroup of G . The best result we can obtain is the following:

MAIN THEOREM: *Let p be a prime dividing the order of a group G with* $(|G|, p - 1) = 1$ and let P be a *Sylow p-subgroup of G.* If every subgroup of *P* \cap *G*^{N} with order p is permutable in $N_G(P)$ and, when $p = 2$, either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$ or P is quaternion-free, *then G* is *p-nilpotent.*

Using this result, we may generalize Buckley's result [BU].

It can be easily seen that the hypothesis stating that when $p = 2$ either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$ or P is quaternionfree in our main theorem cannot be removed. For example, if we let

$$
A = \langle a, b | a^4 = 1, b^2 = a^2, b^{-1}ab = a^{-1} \rangle
$$

be a quaternion group, then A has an automorphism α of order 3. Let $G =$ $\langle \alpha \rangle \ltimes A$. Then, it is clear that every element of G with order 2 lies in the center of G , but G itself is not 2-nilpotent.

We also observe that the assumption $(|G|, p-1) = 1$ cannot be removed in our main theorem. In fact, if we let $G = S_4$ be the symmetric group of degree 4, then it is clear that every subgroup of $P \cap G' = P \cap G^{\mathcal{N}}$ with order 3 is permutable in $N_G(P)$, where P is a Sylow 3-subgroup of G. But G itself is not 3-nilpotent. Even if we assume that G is a group of odd order and every subgroup of $P \cap G^{\mathcal{N}}$ with order p is normal in G , we still cannot obtain that G is p -nilpotent if we remove the assumption $(|G|, p-1) = 1$. In fact, let G be a non-cyclic group of order 21 and $p = 7$. Then every subgroup of G with order 7 is normal in G. But G is not 7-nilpotent.

2. Preliminary results

Recall that if $\mathcal F$ is a formation, then the $\mathcal F$ -residual of a group G is the smallest normal subgroup $G^{\mathcal{F}}$ of G such that $G/G^{\mathcal{F}}$ is in \mathcal{F} . Therefore the nilpotent residual $G^{\mathcal{N}}$ of a group G is the smallest normal subgroup of G such that $G/G^{\mathcal{N}}$ is nilpotent.

First we prove the following elementary lemma, which is needed later.

LEMMA 2.1: *Let G be a 2-group. If every cyclic subgroup of G of order 2 or 4 is permutable in G, then the exponent of* $\Omega_2(G)$ *is at most 4.*

Proof. Let x and y be elements of G with $|x| \leq 4$ and $|y| \leq 4$. If $|x| = |y| = 2$, then it is clear that $xy = yx$ and $|xy| = 2$. Let $|x| = 2$ and $|y| = 4$. Then we have $\langle x \rangle \langle y \rangle = \langle y \rangle \langle x \rangle$. If $[x, y] \neq 1$, then $x^{-1}yx = y^{-1}$ and hence $(xy)^2 = 1$. It follows by the hypotheses that the subgroup $\langle x \rangle \langle y \rangle = \langle x \rangle \langle xy \rangle$ is of order 4, which implies that $[x, y] = 1$, a contradiction. Thus $xy = yx$ and $|xy| = 4$. Now suppose that $|x| = |y| = 4$. By the above proof we know that $\langle x^2, y^2 \rangle \leq Z(\langle x \rangle \langle y \rangle)$. It is clear that $\langle x \rangle \langle y \rangle / \langle x^2, y^2 \rangle$ has exponent 2 and $\langle x^2, y^2 \rangle$ has exponent 2. Hence $|xy| \leq 4$ and the exponent of $\Omega_2(G)$ is at most 4.

Next we prove the following lemma, which, in fact, is a part of our main theorem.

LEMMA 2.2: *Let p be a prime dividing the order of a group G such that* $(|G|, p - 1) = 1$. Let P be a Sylow p-subgroup of G. If every subgroup of $P \cap G^{\mathcal{N}}$ of order p is permutable in G and, when $p = 2$, either every cyclic sub*group of P* \cap *G*^{$\mathcal N$} *of order* 4 *is also permutable in G or P is quaternion-free, then G is p-nilpotent.*

Proof: Suppose that the result is false and let G be a minimal counterexample. It is clear that the hypotheses of the lemma are inherited by subgroups. Therefore, G is a minimal non-p-nilpotent group. By a result of Itô [R, Theorem 10.3.3], G is a minimal non-nilpotant group. It is well-known that G is of order $p^{\alpha}q^{\beta}$, where q is a prime, $q \neq p$, P is normal in G and any Sylow q-subgroup Q of G is cyclic. Moreover, $P = G^{\mathcal{N}}$ and P is of exponent p when p is odd and of exponent at most 4 when $p = 2$ (see [R, Theorem 9.1.9 and Exercises 9.11] for details).

Assume that either p is odd or $p = 2$ and every cyclic subgroup of order 2 or 4 of P is permutable in G. Then G is supersolvable. Therefore, if $p = 2$, we have that G is 2-nilpotent, a contradiction. Hence p is odd. This implies that Q centralises every subgroup of P because q does not divide $p-1$. Consequently, G is nilpotent, a contradiction

Now assume that $p = 2$ and P is quaternion-free. Then $P \cap Z(G) = 1$ by $[D,$ Theorem 2.8]. This is a contradiction, because every element of order 2 in $Z(P)$ is also in $Z(G)$. The proof of the lemma is now complete.

LEMMA 2.3 ([ABP, Lemma 2]): Let $\mathcal F$ be a saturated formation. Assume that G *is a group such that G does not belong to* F and there exists a *maximal subgroup M* of *G* such that $M \in \mathcal{F}$ and $G = MF(G)$, where $F(G)$ is the *Fitting* subgroup *of G. Then* $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ *is a chief factor of G,* $G^{\mathcal{F}}$ *is a p-group for some prime p,* $G^{\mathcal{F}}$ has exponent p if $p > 2$ and exponent at most 4 if $p = 2$. Moreover, $G^{\mathcal{F}}$ is *either an elementary abelian group or* $(G^{\mathcal{F}})' = Z(G^{\mathcal{F}}) = \Phi(G^{\mathcal{F}})$ *is an elementary abelian group.*

3. Main theorem

We now establish our main theorem for p -nilpotent groups.

THEOREM 3.1: *Let p be a prime number dividing the order of a group G with* $(|G|, p-1) = 1$ and P a Sylow p-subgroup of G. If every subgroup of $P \cap G^{\mathcal{N}}$ with *order p is permutable in* $N_G(P)$ *and, when p = 2, either every cyclic subgroup of* $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$ or P is quaternion-free, then G *is p-nilpotent.*

Proof: Assume that the theorem is false and let G be a counterexample of minimal order. Then

 (1) $O_{p'}(G) = 1$.

If $O_{p'}(G) \neq 1$, then we may choose a minimal normal subgroup N of G such that N is contained in $O_{p'}(G)$. Now consider the quotient group G/N . Note that *G/N* satisfies the hypotheses of our theorem. The minimality of G implies that G/N is p-nilpotent and hence G is p-nilpotent, a contradiction.

(2) For every subgroup M of G satisfying $P \leq M < G$, M must be p-nilpotent. In particular, $N_G(P)$ is p-nilpotent.

Let M be a subgroup of G with $P \leq M < G$. Since $N_M(P) \leq N_G(P)$ and $P \cap M^{\mathcal{N}} \leq P \cap G^{\mathcal{N}}$, we know that M satisfies the hypotheses of our theorem. Then, by the choice of G, M is p-nilpotent. If $N_G(P) = G$, then, by Lemma 2.2, G is p-nilpotent. Hence $N_G(P) < G$ and therefore the claim (2) holds.

(3) G is solvable. Furthermore, P is a maximal subgroup of G and a Hall p' -subgroup of G is an elementary abelian q-group Q for some prime q.

Since G is not p-nilpotent, by Frobenius' theorem $[R,$ Theorem 10.3.2], there exists a subgroup H of P such that $N_G(H)$ is not p-nilpotent. By using our claim (2), we may choose a subgroup H of P such that $N_G(H)$ is not p-nilpotent but $N_G(K)$ is p-nilpotent for every subgroup K of P with $H < K < P$. Now we show that $N_G(H) = G$. Suppose on the contrary that $N_G(H) < G$. Then, we have $H < P^* \leq P$ for some $P^* \in \mathrm{Syl}_n(N_G(H))$. Since $P^* \cap (N_G(H))^{\mathcal{N}} \leq P \cap G^{\mathcal{N}}$, we see that every minimal subgroup of $P^* \cap (N_G(H))^{\mathcal{N}}$ is permutable in P^* and, in addition, every cyclic subgroup of order 4 of $P^* \cap (N_G(H))^{\mathcal{N}}$ is permutable in P^* when $p = 2$ and every cyclic subgroup of order 4 of $P \cap G^{\mathcal{N}}$ is permutable in $N_G(P)$. On the other hand, by the choice of H, we know that $N_G(P^*)$ is p-nilpotent and therefore $N_{N_G(H)}(P^*)$ is p-nilpotent. It follows that $N_G(H)$ satisfies the hypotheses of our theorem for its Sylow p -subgroup P^* . Now, by the minimality of G, we immediately see that $N_G(H)$ is p-nilpotent, a contradiction. Hence $O_p(G) \neq 1$ and $N_G(K)$ is p-nilpotent for every subgroup K of P with

 $O_p(G) < K \le P$. Now, using Frobenius' theorem [R, Theorem 10.3.2] again, we see that $G/O_p(G)$ is p-nilpotent and therefore G is p-solvable. By the odd order theorem $[FT]$, it follows that G is solvable.

Let $T/O_p(G)$ be a chief factor of G. Then $T/O_p(G)$ is an elementary abelian q-group for some prime $q \neq p$ and there exists a Sylow q-subgroup Q of T such that $T = QO_p(G)$. It is clear that $PT = PQ$. If $PT < G$, then, by claim (2), *PT* is *p*-nilpotent and therefore $Q \leq C_G(O_p(G))$, which contradicts the fact $C_G(O_p(G) \leq O_p(G)$ [R, Theorem 9.3.1]. Hence $G = PQ$ and Q is a Hall p'subgroup of G. The minimality of $T/O_p(G)$ implies that $P/O_p(G)$ is a maximal subgroup of $G/O_p(G)$ and therefore P is a maximal subgroup of G. Thus (3) holds.

(4) $1 \neq P \cap G^{\mathcal{N}}$ is normal in G.

Since G is solvable and G is not p-nilpotent, we know that $1 \neq G^{\mathcal{N}} < G$. It follows from (1) that $P \cap G^{\mathcal{N}} \neq 1$. By step (3) we have that $QO_n(G)$ is normal in G and $G/QO_p(G)$ is nilpotent. Therefore $G^{\mathcal{N}} < QO_p(G)$ and so $P \cap G^{\mathcal{N}} = O_p(G) \cap G^{\mathcal{N}}$ is normal in G. Thus (4) holds.

(5) $G = (P \cap G^{\mathcal{N}})L$, where $L = \langle a \rangle \times Q$ is a non-abelian split extension of a normal Sylow q-subgroup Q by a cyclic p-subgroup $\langle a \rangle$, $a^p \in Z(L)$ and the action of α (by conjugation) on Q is irreducible.

By the definition of $G^{\mathcal{N}}$, we know that $G/P\cap G^{\mathcal{N}}$ is p-nilpotent. Let $D/P\cap G^{\mathcal{N}}$ be a normal *p*-complement of $G/P\cap G^{\mathcal{N}}$. By Schur-Zassenhaus' theorem we may assume that $D = (P \cap G^{\mathcal{N}})Q$.

Let $P_1/P \cap G^{\mathcal{N}}$ be a maximal subgroup of $P/P \cap G^{\mathcal{N}}$. Then $P \leq N_G(P_1)$. The maximality of P implies that $N_G(P_1) = P$ or G. If $N_G(P_1) = P$, then $N_H(P_1) = P_1$, where $H = P_1D = P_1Q$. It is clear that $P_1 \cap H^{\mathcal{N}} \leq P \cap G^{\mathcal{N}}$ and therefore H satisfies the hypotheses of our theorem. By the minimality of G, we have that H is p-nilpotent. It follows that $(P \cap G^{\mathcal{N}})Q = (P \cap G^{\mathcal{N}}) \times Q$ and therefore Q is a normal subgroup of G , a contradiction. Hence P_1 is normal in G. It follows that $O_p(G) = P_1$ and $P/P \cap G^{\mathcal{N}}$ is a cyclic group. On the other hand, by the Frattini argument we have that

$$
G = (P \cap G^{\mathcal{N}})N_G(Q).
$$

Thus, noticing that P is not normal in G, we may assume that $G = (P \cap G^{\mathcal{N}})L$, where $L = \langle a \rangle \times Q$ is a non-abelian split extension of a normal Sylow q-subgroup Q by a cyclic p-subgroup $\langle a \rangle$. Since $[P:O_p(G)] = p$ and $O_p(G) \cap N_G(Q) \triangleleft N_G(Q)$, we see that $a^p \in Z(L)$. Also, since P is a maximal subgroup of G, we know that $(P \cap G^{\mathcal{N}})Q/P \cap G^{\mathcal{N}}$ is a minimal normal subgroup of $G/P \cap G^{\mathcal{N}}$ and therefore the action of a (by conjugation) on Q is irreducible. The claim (5) is proved.

(6) If $\Omega_1(P \cap G^{\mathcal{N}}) \cap \langle a \rangle = 1$, then $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$.

In fact, let $G_1 = \Omega_1(P \cap G^{\mathcal{N}})L$. Then it is clear that $\Omega_1(P \cap G^{\mathcal{N}})$ is an elementary abelian group by hypothesis. Since, for any $x \in \Omega_1(P \cap G^{\mathcal{N}})$, $\langle x \rangle \langle a \rangle =$ $\langle a \rangle \langle x \rangle$ by hypothesis, we have $x^a \in \Omega_1(P \cap G^{\mathcal{N}}) \cap (\langle x \rangle \langle a \rangle) = \langle x \rangle$. This means that a induces a power automorphism of p -power order in the elementary abelian p-group $\Omega_1(P \cap G^{\mathcal{N}})$. Hence $[\Omega_1(P \cap G^{\mathcal{N}}),a] = 1$. If there exist an element $1 \neq x \in \Omega_1(P \cap G^{\mathcal{N}})$ and an element $1 \neq g \in Q$ such that $x^g = x_1 \neq x$, then we have $x^{a^{-1}ga} = x_1$ and therefore $x^{a^{-1}gag^{-1}} = x$. It follows that $C_{G_1}(x) \ge$ $\langle \Omega_1(P \cap G^{\mathcal{N}}), \langle a \rangle, a^{-1}gag^{-1} \rangle$. Since the action of a on Q is irreducible, we have that $Q\Omega_1(P\cap G^{\mathcal{N}})/\Omega_1(P\cap G^{\mathcal{N}})$ is a minimal normal subgroup of $G_1/\Omega_1(P\cap G^{\mathcal{N}})$ and therefore $\Omega_1(P \cap G^{\mathcal{N}})(a)$ is a maximal subgroup of G_1 . It follows that $C_{G_1}(x) = \Omega_1(P \cap G^{\mathcal{N}})\langle a \rangle$ or G_1 . But $1 \neq a^{-1}gag^{-1} \in Q$. Hence we have $C_{G_1}(x) = G_1$, in contradiction to $x^g \neq x$. Hence $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$ and the claim (6) is true.

(7) The final contradiction.

For the sake of convenience, we consider the following two cases:

CASE 1: $p > 2$ or $p = 2$ and P is quaternion-free. For this case, we let $G_1 =$ $\Omega_1(P \cap G^{\mathcal{N}})L$. If $\Omega_1(P \cap G^{\mathcal{N}}) \cap \langle a \rangle = 1$, then, by (6), $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$.

Now assume that $\Omega_1(P \cap G^{\mathcal{N}}) \cap \langle a \rangle = \langle a^{p^{\alpha}} \rangle$. Then $\langle a^{p^{\alpha}} \rangle$ is a cyclic group with order p and $\langle a^{p^{\alpha}} \rangle \leq Z(G_1)$ since $a^p \leq Z(L)$. Consider the quotient group $G_1/\langle a^{p^{\alpha}}\rangle$. It is clear that $(\Omega_1(P\cap G^{\mathcal{N}})/\langle a^{p^{\alpha}}\rangle)\cap \langle a\rangle/\langle a^{p^{\alpha}}\rangle = 1$ and every subgroup of $\Omega_1(P \cap G^{\mathcal{N}})/\langle a^{p^{\alpha}} \rangle$ of order p is permutable in $\Omega_1(P \cap G^{\mathcal{N}})/\langle a^{p^{\alpha}} \rangle$. Noting that $\Omega_1(P \cap G^{\mathcal{N}})(a)/\langle a^{p^{\alpha}} \rangle$ is a maximal subgroup of $G_1/\langle a^{p^{\alpha}} \rangle$ and using the arguments as in (6), we see that $[\Omega_1(P \cap G^N)/\langle a^{p^{\alpha}} \rangle, Q\langle a^{p^{\alpha}} \rangle/\langle a^{p^{\alpha}} \rangle] = 1$ and therefore Q stabilizes the chain of subgroups

$$
1 \le \langle a^{p^{\alpha}} \rangle \le \Omega_1(P \cap G^{\mathcal{N}}).
$$

It follows from [G, Theorem 5.3.2] that $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$.

By [G, Theorem 5.3.10] if $p > 2$ and [D, Lemma 2.15] if $p = 2$ we conclude that $[P \cap G^{\mathcal{N}}, Q] = 1$ and therefore Q is a normal subgroup of G, a contradiction.

CASE 2: $p = 2$ and every cyclic subgroup of $(P \cap G^{\mathcal{N}})$ with order 2 or 4 is permutable in $N_G(P)$. Let $G_2 = \Omega_2(P \cap G^{\mathcal{N}})L$. If $\Omega_1(P \cap G^{\mathcal{N}}) \cap \langle a \rangle = 1$, then, by (6), we have $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$. Now we assume that $\Omega_1(P \cap G^{\mathcal{N}}) \cap \langle a \rangle =$ $A = \langle c \rangle$ is a cyclic group of order 2. It is clear that $A \leq Z(\Omega_1(P \cap G^{\mathcal{N}}))$. Let $x \in \Omega_2(P \cap G^{\mathcal{N}})$ with order 4. By the hypotheses, we have $A\langle x \rangle = \langle x \rangle A$. If $[c, x] \neq 1$, then $c^{-1}xc = x^{-1}$ and so $(xc)^2 = 1$. It follows that the subgroup $A(x) = \langle xc \rangle A$ is of order 4, which implies that $[c, x] = 1$, a contradiction. Hence,

by Lemma 2.1, A is in the center of $\Omega_2(P \cap G^{\mathcal{N}})$ and therefore $A \leq Z(G_2)$. By the same argument as in Case 1 we have that $[\Omega_1(P \cap G^{\mathcal{N}}), Q] = 1$.

Next, we consider the quotient group $G_2/\Omega_1(P \cap G^{\mathcal{N}})$. It is clear that every minimal subgroup of $\Omega_2(P \cap G^{\mathcal{N}})/\Omega_1(P \cap G^{\mathcal{N}})$ is permutable in $\Omega_2(P \cap G^{\mathcal{N}})(a)/\Omega_1(P \cap G^{\mathcal{N}})$. Noticing that $\Omega_2(P \cap G^{\mathcal{N}})(a)/\Omega_1(P \cap G^{\mathcal{N}})$ is a maximal subgroup of $G_2/\Omega_1(P \cap G^N)$ and using the same arguments as in Case 1 we may have that $[\Omega_2(P \cap G^{\mathcal{N}})/\Omega_1(P \cap G^{\mathcal{N}}), Q\Omega_1(P \cap G^{\mathcal{N}})/\Omega_1(P \cap G^{\mathcal{N}})] = 1$ and therefore Q stabilizes the chain of subgroups

$$
1 \leq \Omega_1(P \cap G^{\mathcal{N}}) \leq \Omega_2(P \cap G^{\mathcal{N}}).
$$

By [G, Theorem 5.3.2], $[\Omega_2(P \cap G^N), Q] = 1$. It follows from [H, Satz 4.5.12] that $[P \cap G^{\mathcal{N}}, Q] = 1$ and therefore Q is normal in G, a contradiction.

The proof of the theorem is complete. \blacksquare

COROLLARY 3.2: *Let p be* the *smallest prime dividing* the order *of a group G* and let P be a Sylow p-subgroup of G. If every subgroup of $P \cap G^{\mathcal{N}}$ with order *p* is permutable in $N_G(P)$ and, when $p = 2$, either every cyclic subgroup of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in $N_G(P)$ or P is quaternion-free, then G is *p-nilpotent.*

4. Applications

As we have mentioned above, Buckley showed that a group G of odd order is supersolvable if each minimal subgroup of G is normal in G . Now we generalize this result. We replace not only the normal assumption of minimal subgroups by the permutable assumption of minimal subgroups, but also all minimal subgroups of G by some minimal subgroups of G . In fact, our result is more general.

THEOREM 4.1: Let $\mathcal F$ be a saturated formation containing the class $\mathcal U$ of supersolvable groups. Let N be a normal subgroup of a group G such that G/N is in *.~. If for every prime p dividing the order of N* and *for every Sylow p-subgroup P* of *N*, every subgroup of prime order of $P \cap G^{\mathcal{N}}$ is permutable in $N_G(P)$ and, when $p = 2$, either every cyclic subgroup of order 4 of $P \cap G^{\mathcal{N}}$ is permutable in $N_G(P)$ or P is quaternion-free, then G is in \mathcal{F} .

Proof: Assume that the theorem is false and let G be a counterexample of minimal order. By our Theorem 3.1, we know that N is a Sylow tower group of supersolvable type. Thus, if p is the largest prime dividing the order of N and

P is a Sylow p-subgroup of N, then P must be normal in G . Now, we consider the quotient group G/P . Then G/P has a normal subgroup N/P such that $(G/P)/(N/P) \simeq G/N \in \mathcal{F}$. If H/P is a Sylow q-subgroup of N/P , then $q \neq p$ and we may choose a Sylow q-subgroup Q of N such that $H = PQ$. Moreover, $(G/P)^{\mathcal{N}} = G^{\mathcal{N}}P/P$. Let \bar{x} be an element of order q or 4 in $(QP/P) \cap (G/P)^{\mathcal{N}}$. Then $\bar{x} = xP$ for some element $x \in Q \cap G^{\mathcal{N}}$. By hypothesis, $\langle x \rangle$ is permutable in $N_G(Q)$. It follows that $\langle \overline{x} \rangle$ is permutable in $N_{G/P}(QP/P) = N_G(Q)P/P$. Hence *G/P* satisfies the hypotheses of our theorem and therefore the minimality of G implies that G/P is in $\mathcal F$. This also implies that every subgroup of prime order of $P \cap G^{\mathcal{N}}$ is permutable in G and, when $p = 2$, either every subgroup of order 4 of $P \cap G^{\mathcal{N}}$ is permutable in G or P is quaternion-free.

Since $G^{\mathcal{F}} \leq G^{\mathcal{N}}$ and G is not in \mathcal{F} , we see that $1 \neq G^{\mathcal{F}}$ is contained in $P \cap G^{\mathcal{N}}$ and $G^{\mathcal{F}}$ is a p-group. Now by [B, Theorem 3.5], there exists a maximal subgroup M of G such that $G = MF'(G)$, where $F'(G) = \text{Soc}(G \mod \Phi(G))$ and $G/\text{core}_G(M)$ is not in \mathcal{F} . Then $G = MG^{\mathcal{F}}$ and therefore $G = MF(G)$ since $G^{\mathcal{F}}$ is a p-group, where $F(G)$ is the Fitting subgroup of G. It is now clear that M satisfies the hypotheses of our theorem for its normal subgroup $M \cap P$. Hence, by the minimality of G , we have that M belongs to \mathcal{F} .

Now, by Lemma 2.3, $G^{\mathcal{F}}$ has exponent p when $p \neq 2$ and exponent at most 4 when $p = 2$. If $G^{\mathcal{F}}$ is an elementary abelian group, then $G^{\mathcal{F}}$ is a minimal normal subgroup of G. It is clear that $G^{\mathcal{F}}$ is not contained in the Frattini subgroup of G. Thus there is a maximal subgroup L of G such that $G = LG^{\mathcal{F}}$ and $L \cap G^{\mathcal{F}} = 1$. For any minimal subgroup A of $G^{\mathcal{F}}$, by our hypotheses, A is permutable in $G = N_G(P)$ and therefore *LA* is a subgroup of *G*. It follows that $G^{\mathcal{F}} = A$ is a cyclic group of order p.

We now suppose that $G^{\mathcal{F}}$ is not an elementary abelian group. Then $(G^{\mathcal{F}})' =$ $Z(G^{\mathcal{F}}) = \Phi(G^{\mathcal{F}})$ is an elementary abelian group by Lemma 2.3. For any minimal subgroup \overline{A} of $G^{\mathcal{F}}/(G^{\mathcal{F}})'$, there exists a subgroup A of $G^{\mathcal{F}}$ such that $\overline{A} = A(G^{\mathcal{F}})'/(G^{\mathcal{F}})'$. If A is of prime order, then, noticing that

$$
(G^{\mathcal{F}}/(G^{\mathcal{F}})') \cap (\Phi(G)/(G^{\mathcal{F}})') = 1
$$

and by using the above arguments, we can prove that \overline{A} is normal in $G/(G^{\mathcal{F}})'$. The minimality of $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ implies that $\overline{A} = G^{\mathcal{F}}/(G^{\mathcal{F}})'$, and therefore $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a cyclic group of prime order. Hence the remaining case is when $p = 2$ and every element generating $G^{\mathcal{F}}$ is of order 4. It follows immediately that $\Omega_1(G^{\mathcal{F}}) = (G^{\mathcal{F}})' = Z(G^{\mathcal{F}}) = \Phi(G^{\mathcal{F}})$. For any minimal subgroup A of $\Omega_1(G^{\mathcal{F}})$ and any Sylow q-subgroup Q of G ($q \neq 2$), by our hypotheses, $QA = AQ$ is a subgroup of $\Omega_1(G^{\mathcal{F}})Q$. It follows that A is a normal subgroup of QA and therefore $A \leq Z(AQ)$. Hence every 2'-element of G acts (by conjugation) trivially on $\Omega_1(G^{\mathcal{F}})$. If P is quaternion-free, by [D, Lemma 2.15] every 2'-element of G acts trivially on $G^{\mathcal{F}}$. Since $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a chief factor of G, we see that $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a cyclic group of prime order. If every cyclic subgroup of order 4 of $P\cap G^{\mathcal{N}}$ is permutable in $N_G(P) = G$, then, using the above arguments, we can also prove that $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is a cyclic group of prime order. We have now shown that in any case, $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is always a cyclic group of prime order. Noticing that $G^{\mathcal{F}}/(G^{\mathcal{F}})'$ is *G*-isomorphic to $Soc(G/\text{core}_G(M))$, it follows that $G/\text{core}_G(M)$ is supersolvable, a contradiction. Thus, our proof is completed.

Remark *4.2:* It is noted that Theorem 4.1 is not true if the saturated formation $\mathcal F$ does not contain $\mathcal U$. For example, if $\mathcal F$ is the saturated formation of all nilpotent groups, then the symmetric group of degree three is a counterexample.

Remark 4.3: It is also noted that Theorem 4.1 is generally not true for nonsaturated formations. To see this remark, we let $\mathcal F$ be a formation composed by all groups G such that $G^{\mathcal{U}}$ is elementary abelian. Clearly, $\mathcal{F} \geq \mathcal{U}$, but \mathcal{F} is not saturated. Let $G = SL(2,3)$ and $H = Z(G)$. Then G/H is isomorphic to the alternating group of degree four and thereby $G/H \in \mathcal{F}$. But G does not belong to $\mathcal F$. This illustrates the situation.

COROLLARY 4.4: *Let G be a group. If* for *every prime p dividing the order* of *G* and for every Sylow p-subgroup P of G, every subgroup of prime order of $P \cap G^{\mathcal{N}}$ is permutable in $N_G(P)$ and, when $p = 2$, either every cyclic subgroup *of order 4 of P* \cap *G*^{\mathcal{N}} *is permutable in* $N_G(P)$ *or P is quaternion-free, then G is supersolvable.*

Using arguments similar to those in the proof of [BG, Theorem 3], we may prove the following

THEOREM 4.5: *Let M be a nilpotent maximal subgroup of a group G and let P* be a Sylow 2-subgroup of *M*. If every subgroup of $P \cap G^{\mathcal{N}}$ with order 2 *is permutable in P and either P is quaternion-free* or *every cyclic subgroup* of $P \cap G^{\mathcal{N}}$ with order 4 is permutable in P, then G is solvable.

ACKNOWLEDGEMENT: The authors would like to thank the referee for his valuable suggestions and useful comments which contributed to the final version of this paper.

References

- [ABP] M. Asaad, A. Ballester-Bolinches and M. C. Pedraza-Aguilera, *A note on minimal subgroups of finite groups,* Communications in Algebra 24 (1996), 2771 2776.
- [B] A. Ballester-Bolinches, *H*-normalizers and local definitions of saturated *formations of finite groups, Israel Journal of Mathematics 67 (1989), 312-326.*
- [BG] A. Ballester-Bolinehes and X. Y. Guo, *Some results on p-nilpotence and solubility of finite groups, Journal of Algebra 228 (2000), 491–496.*
- [BU] 3. Buckley, *Finite groups whose minimal subgroups* are *normal,* Mathematische Zeitschrift 16 (1970), 15-17.
- [D] L. Dornhoff, *M-groups and 2-groups,* Mathematische Zeitschrift 100 (1967), 226-256.
- [FT] W. Feit and J. G. Thompson, *Solvabili(v of groups of odd order,* Pacific Journal of Mathematics 13 (1963), 775-1029.
- [G] D. Gorenstein, *Finite Groups,* Harper and Row Publishers, New York, Evanston and London, 1968.
- [GS] X.Y. Guo and K. P. Shum, *The influence of minimal subgroups of focal subgroups on the structure of finite groups,* Journal of Pure and Applied Algebra 169 (2002), $43 - 50$.
- [H] B. Huppert, *Endliche Gruppen I,* Springer-Verlag, New York, 1967.
- [R] D.J.S. Robinson, *A Course in the Theory of Groups,* Springer-Verlag, New York-Berlin, 1993.