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1. Introduct ion  

All groups considered in this paper are finite. The relationship between the 

properties of minimal subgroups of a group G and the structure of G has been 

extensively studied by a number of authors (for example, see [ABP], [BG], [BU] 

and [GS]). A well known result is a lemma by It6 [H, p. 435], which states that  

a group G is p-nilpotent if every element of G of order p lies in Z(G) and, when 

p = 2, every element of G of order 4 also lies in Z(G),  where p is a prime dividing 

the order of a group G. 

Buckley showed in 1970 that  a group G of odd order is supersolvable if all 

minimal subgroups of G are normal in G [BU]. Since then, there are a number 

of papers in the literature dealing with the generalizations of this result. In this 

paper, we focus on the p-nilpotence of groups which relates with Burnside's well- 

known theorem for p-nilpotence, that  is, if p is a prime dividing the order of a 

group G and P is a Sylow p-subgroup of G such that  P is contained in the center 

of its normalizer, then G is p-nilpotent. 

Inspired by the above Burnside's theorem and It6's lemma, one might wonder 

whether a group G is p-nilpotent if every element of G with order p lies in 

the center of N a ( P )  and every element of G with order 4 is also in the center of 

N c ( P )  when p = 2, where P is a Sylow p-subgroup of G. Concerning this aspect, 

Ballester-Bolinches and Guo have recently given an answer to this question [BG]. 

They proved the following result. 

THEOREM A ([BG, Theorem 1 and Theorem 2]): Let p be a prime dividing the 

order of  a group G and let P be a Sylow p-subgroup of G. I f  every element of 

P N G' with order p lies in the center of NG'(P) and when p = 2 either every 

element of P N G '  with order 4 lies in tile center of N o ( P )  or P is quaternion-free 

and NG(P) is 2-nilpotent, then G is p-nilpotent, where G' is the commutator 

subgroup of  G. 

Now recall that  a subgroup H of a group G is permutable (or quasinormal) 

in G if H K  ~ I ( H  for any subgroup K of G. It  is clear that  permutabil i ty is a 

weak form of normality. Let us denote by G N the nilpotent residual of a group G. 

Since G ~v _< G t, we may ask whether the group G is p-nilpotent or not if every 

subgroup of P N G jv with order p is permutable in N o ( P )  and, when p = 2, 

every cyclic subgroup of P A G N with order 4 is permutable in NG(P),  where P 

a Sylow p-subgroup of G. The best result we can obtain is the following: 

MAIN THEOREM: Let p be a prime dividing the order of a group G with 

(IGI,p - 1) ~ 1 and let P be a Sylow p-subgroup of  G. I f  every subgroup of 
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P N G  ~v with order p is permutab le  in N G ( P )  and, when p = 2, either every cyclic 

subgroup of  P N G  N with order 4 is permutable  in N G ( P )  or P is quaternion-free, 

then G is p-nilpotent .  

Using this result, we may generalize Buckley's  result [BU]. 

It can be easily seen tha t  the hypothesis s tat ing that  when p = 2 either every 

cyclic subgroup of P N G  nc with order 4 is permutable  in NG (P)  or P is quaternion- 

free in our main theorem cannot  be removed. For example, if we let 

A = (a, bla 4 = 1,b 2 = a2, b - lab  = a - l )  

be a quaternion group, then A has an au tomorphism (~ of order 3. Let G = 

<a} D< A. Then, it is clear tha t  every element of G with order 2 lies in the center 

of G, but  G itself is not  2-nilpotent. 

We also observe that  the assmnption ( ] G [ , p -  1) = 1 cannot  be removed in our 

main theorem. In fact, if we let G = $4 be the symmetr ic  group of degree 4, then 

it is clear tha t  every subgroup of P n G'  = P N G A; with order 3 is permutable  

in N o ( P ) ,  where P is a Sylow 3-subgroup of G. But  G itself is not 3-nilpotent. 

Even if we assume tha t  G is a group of odd order and every subgroup of P N G H 

with order p is normal  in G, we still cannot  obtain tha t  G is p-nilpotent if we 

remove the assumption (]GI, p - 1) = 1. In fact, let G be a non-cyclic group of 

order 21 and p = 7. Then every subgroup of G with order 7 is normal  in G. But  

G is not 7-nilpotent. 

2. Prel iminary results 

Recall tha t  if Y is a formation, then the Y-residual of a group G is the smallest 

normal  subgroup G 7 of G such that  G I G  °~ is in Y. Therefore the nilpotent 

residual G A; of a group G is the smallest normal  subgroup of G such that  G / G  ~¢ 

is nilpotent.  

First  we prove the following elementary lemma, which is needed later. 

LEMMA 2.1: Let  G be a 2-group. I f  every cyclic subgroup o f  G of  order 2 or 4 

is permutable  in G, then the exponent  o f  f~2(G) is at mos t  4. 

Proof." Let x and y be elements of G with Ix[ < 4 and [y[ _< 4. If  Ix[ = lY[ = 2, 

then it is clear tha t  x y  = y z  and ]zy[ = 2. Let Ix] = 2 and lYl = 4. Then we have 

(x)(y} = (y}(x>. If  ix, y] # 1, then x - l y x  = y - '  and hence (xy)  "2 = 1. It follows 

by the hypotheses tha t  the subgroup (a'} (y) = (x} (xy} is of order 4, which implies 

tha t  Ix, y] = 1, a contradiction. Thus xy = y x  and la'y{ = 4. Now suppose that  
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Ixl = lyl = 4. By the above proof we know that  (x 2, y2} _< Z((x}(y}).  It  is clear 

that  (x} (y ) / (x  2, y2) has exponent 2 and (x 2, y2) has exponent 2. Hence Ixyl <_ 4 

and the exponent of t22(G) is at most 4. | 

Next we prove the following lemma, which, in fact, is a part  of our main 

theorem. 

LEMMA 2.2: Let p be a prime dividing the order of a group G such that 

(IGl,p - 1) = 1. Let P be a Sylow p-subgroup of  G. I f  every subgroup of  

P N G X of  order p is permutable in G and, when p = 2, either every cyclic sub- 

group of  P N G X of  order 4 is also permutable in G or P is quaternion-free, then 

G is p-nilpotent. 

Proof: Suppose that  the result is false and let G be a minimal counterexample. It  

is clear that  the hypotheses of the lemma are inherited by subgroups. Therefore, 

G is a minimal non-p-nilpotent group. By a result of It6 JR, Theorem 10.3.3], 

G is a minimal non-nilpotant group. It  is well-known that  G is of order p~qZ, 

where q is a prime, q ~ p, P is normal in G and any Sylow q-subgroup Q of G is 

cyclic. Moreover, P = G X and P is of exponent p when p is odd and of exponent 

at most 4 when p = 2 (see JR, Theorem 9.1.9 and Exercises 9.11] for details). 

Assume that  either p is odd or p = 2 and every cyclic subgroup of order 2 or 

4 of P is permutable in G. Then G is supersolvable. Therefore, if p = 2, we 

have that  G is 2-nilpotent, a contradiction. Hence p is odd. This implies that  Q 

centralises every subgroup of P because q does not divide p - 1. Consequently, 

G is nilpotent, a contradiction 

Now assume that  p = 2 and P is quaternion-free. Then P A Z(G) = 1 by [D, 

Theorem 2.8]. This is a contradiction, because every element of order 2 in Z(P)  

is also in Z(G).  The proof of the lemma is now complete. | 

LEMMA 2.3 ([ABP, Lemma 2]): Let J: be a saturated formation. Assume that  G 

is a group such that G does not belong to f i  and there exists a maximal subgroup 

M of G such that M E Jr and G = M F ( G ) ,  where F(G) is the Fit t ingsubgroup 

of  G. Then GT /(GJ:) ' is a chief factor of  G, G ~ is a p-group for some prime p, 

G J: has exponent p i f p  > 2 and exponent at most  4 i f p  = 2. Moreover, G ~: is 

either an elementary abelian group or (GT) ' = Z(G ~:) = ~(G 7) is an elementary 

abelian group. 
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3. M a i n  t h e o r e m  

We now establish our main theorem for p-nilpotent groups. 

THEOREM 3.1: Let p be a prime number dividing the order of a group G with 

(]G I, p - 1 )  = 1 and P a Sylow p-subgroup of G. If  every subgroup of PNG X with 

order p is permutable in No(P)  and, when p = 2, either every cyclic subgroup 

of P N G ~¢ with order 4 is permutable in Nc;(P) or P is quaternion-free, then G 

is p-nilpotent. 

Proof: Assume that the theorem is false and let G be a counterexample of 

minimal order. Then 

(1) Op,(G) = 1. 

If Op, (G) ~ 1, then we may choose a minimal normal subgroup N of G such 

that N is contained in Op, (G). Now consider the quotient group G/N. Note that 

G/N satisfies the hypotheses of our theorem. The minimality of G implies that 

G / N  is p-nilpotent and hence G is p-nilpotent, a contradiction. 

(2) For every subgroup M of G satisfying P _< M < G, M must be p-nilpotent. 

In particular, NG(P) is p-nilpotent. 

Let M be a subgroup of G with P_< M < G. Since NM(P) < NG(P) and 

P A M X _< P n G ~v, we know that M satisfies the hypotheses of our theorem. 

Then, by the choice of G, M is p-nilpotent. If NG(P) = G, then, by Lemma 2.2, 

G is p-nilpotent. Hence No(P)  < G and therefore the claim (2) holds. 

(3) G is solvable. Furthermore, P is a maximal subgroup of G and a Hall 

p'-subgroup of G is an elementary abelian q-group Q for some prime q. 

Since G is not p-nilpotent, by Frobenius' theorem JR, Theorem 10.3.2], there 

exists a subgroup H of P such that NG(H) is not p-nilpotent. By using our claim 

(2), we may choose a subgroup H of P such that NG(H) is not p-nilpotent but 

NG(K) is p-nilpotent for every subgroup K of P with H < I(  _< P. Now we show 

that No(H)  = G. Suppose on the contrary that No(H)  < G. Then, we have 

H < P* _< P for some P* E Sylp(Nc(H)) .  Since P* A (No(H))  Ac <_ P N G  ~v, we 

see that every minimal subgroup of P* N (NG(H)) Ac is permutable in P* and, in 

addition, every cyclic subgroup of order 4 of P* n (No(H))  H is pernmtable in 

P* when p = 2 and every cyclic subgroup of order 4 of P n G °v is permutable 

in No(P).  On the other hand, by the choice of H, we know that No(P*) is 

p-nilpotent and therefore NNa(H)(P*) is p-nilpotent. It follows that No(H)  

satisfies the hypotheses of our theorem for its Sylow p-subgroup P*. Now, by the 

minimality of G, we immediately see that NG(H) is p-nilpotent, a contradiction. 

Hence Op(G) # 1 and No(K)  is p-nilpotent for every subgroup K of P with 
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On(G) < K < P. Now, using Frobenius' theorem [R, Theorem 10.3.2] again, we 

see that  G/Op(G) is p-nilpotent and therefore G is p-solvable. By the odd order 

theorem [FT], it follows that  G is solvable. 

Let T/Op(G) be a chief factor of G. Then T/On(G ) is an elementary abelian 

q-group for some prime q ~ p and there exists a Sylow q-subgroup Q of T such 

that  T = QOp(G). It  is clear that  PT = PQ. If PT < G, then, by claim 

(2), PT is p-nilpotent and therefore Q <_ Ca(Op(G)), which contradicts the fact 

CG(Op(G) ~_ On(G ) [R, Theorem 9.3.1]. Hence G = PQ and Q is a Hall p '-  

subgroup of G. The minimality of T/Op(G) implies that  P/On(G ) is a maximal 

subgroup of G/Op(G) and therefore P is a maximal subgroup of G. Thus (3) 

holds. 

(4) 1 ¢ P N G N is normal in G. 

Since G is solvable and G is not p-nilpotent, we know that  1 ¢ G 2¢ < G. 

It  follows from (1) that  P n G jv ¢ 1. By step (3) we have that  QOn(G ) is 

normal in G and G/QOp(G) is nilpotent. Therefore G N <_ QOB(G) and so 

P n G X = On(G) N G • is normal in G. Thus (4) holds. 

(5) G = (P  n G~')L, where L = (a) ~< Q is a non-abelian split extension of a 

normal Sylow q-subgroup Q by a cyclic p-subgroup (a), a p E Z(L) and the action 

of a (by conjugation) on Q is irreducible. 

By the definition of G 2¢, we know that  G/PNG X is p-nilpotent. Let D/PNG N 
be a normal p-complement of G/PNG N. By Schur-Zassenhaus' theorem we may 

assume that  D = (P  n GX)Q. 
Let P1/P n G X be a maximal subgroup of P / P  n G X. Then P _~ No(P1).  

The maximali ty of P implies that  Nc(P1) = P or G. If NG(P1) = P,  then 

NH(Pa) = Pa, where H = PID = P1Q. It  is clear that  P 1 N H  Ar _< P N G  Af 

and therefore H satisfies the hypotheses of our theorem. By the minimality of 

G, we have that  H is p-nilpotent. It  follows that  (P  N GX)Q = (P N G ~') × Q 
and therefore Q is a normal subgroup of G, a contradiction. Hence P1 is normal 

in G. It  follows that  On(G) = P1 and P / P  N G H is a cyclic group. On the other 

hand, by the Frattini argument we have that  

G = (P N G~')NG(Q). 

Thus, noticing that  P is not normal in G, we may assume that  G = ( P N  G'~)L, 
where L = (a) ~ Q is a non-abelian split extension of a normal Sylow q-subgroup 

Q by a cyclic p-subgroup (a). Since [P : Op(G)] = p and Op(G)NNG(Q)<~Nc(Q), 
we see that  a n E Z(L). Also, since P is a maximal subgroup of G, we know that  

(P n GAr)Q/P N G ~f is a minimal normal subgroup of G/P  N G X and therefore 

the action of a (by conjugation) on Q is irreducible. The claim (5) is proved. 
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(6) If f t l ( P  n G/C)n  (a} = 1, then [QI(P n G/C), Q] =- 1. 

In fact, let G~ = f~ I (PnG/C)L .  Then it is clear that  ~ I ( P n G  N) is an 

elementary abelian group by hypothesis. Since, for any x • ~ l ( P n G / c ) ,  (x)(a} = 
(a)(x) by hypothesis, we have x a • f h ( P  n G H) A ((x)(a}) = (x}. This means 

that  a induces a power automorphism of p-power order ill the elementary abelian 

p-group f t l ( P  O G/C). Hence [f~l(P N G/c),a] = 1. If there exist an element 

1 ~ x • f t l ( P  N G/C) and an element 1 ~ g • Q such that  x g = ;rl 7 ~ x, then 

we have x a-19a = xl and therefore x a-19ag-1 = x. It  follows that  Ca~(x) > 

( f h ( P  N G/C), (a), a-lgag-1) .  Since the action of a on Q is irreducible, we have 

that. Q~I (P(3G/c) / fh  (P(3G/C) is a nfinimal nornml subgroup of G1/f~l (P(3G/C) 
and therefore f t l (P  (3 G/c)(a) is a maximal subgroup of G1. It follows that  

C6'~(x) = f~I(P (3 G/c)(a} or G1. But. 1 ¢ a- lgag -1 • Q. Hence we have 

CG1 (x) = G1, in contradiction to x g ¢ :c. Hence [~1  (P  n G/C), Q] = 1 and the 

claim (6) is true. 

(7) The final contradiction. 

For the sake of convenience, we consider the following two cases: 

CASE 1: p > 2 or p = 2 and P is quaternion-fi'ee. For this case, we let G1 = 

~1 (P n G/C)L. If  ~1 (P  (3 G/C) (3 (a} = 1, then, by (6), [fh ( P  (3 G/C), Q] = 1. 

Now assume that  f~l(P ffl G/C) (3 (a} = (aPa}. Then (a po} is a cyclic group 

with order p and (a p~} <_ Z(G~) since a p <_ Z(L).  Consider the quotient group 

at/(ap'}. It is clear that  (f21 (P(3G/c)/(aP"))(3(a}/(a ;~) = 1 and every subgroup 

of O I ( P  O G/c)/(a p~ > of order p is permutable ill f l l ( P  (3 G/c)(a}/(aP~>. Noting 

that  f h ( P  cl G/c)(a)/(a p") is a maximal subgroup of G1/(a p") and using the 

arguments as in (6), we see that  [ f t l (P n G/C)/(aF'),Q(aP'~)/(aP~)] = 1 and 

therefore Q stabilizes the chain of subgroups 

1 _< (a'~} < fla(PnG/c). 

It  follows from [G, Theorem 5.3.2] that. [ f t l (P  n G/C), Q] = 1. 

By [G, Theorem 5.3.10] i fp  > 2 and [D, Lemma 2.15] i fp  = 2 we conclude that  

[P n G/c, Q] = 1 and therefore Q is a normal subgroup of G, a contradiction. 

CASE 2: p = 2 and every cyclic subgroup of ( P  (3 G/C) with order 2 or 4 is 

permutable in Na(P) .  Let G2 = ~ 2 ( P  n G/C)L. If f t l ( P  (3 G/c) N (a) = 1, then, 

by (6), we have [f~l(P n G/C), Q] = 1. Now we assume that  f t l ( P  n G/C)n (a) = 

A = (c} is a cyclic group of order 2. It  is clear that  A <_ Z ( ~ I ( P n  G/c)). Let 

x E ~22(P N G/C) with order 4. By the hypotheses, we have A(x> = (x>A. If 

[c,x] ¢ 1, then c - l xc  = x -1 and so (xc) 2 = 1. It  follows that  the subgroup 

A(x) = (xc}A is of order 4, which implies that  [c, x] = 1, a contradiction. Hence, 
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by Lemma 2.1, A is in the center of f t2(P n G ~y) and therefore A < Z(G2). By 

the same argument as in Case 1 we have that  [f~l(P n GX), Q] = 1. 

Next, we consider the quotient group G2/f t l (P n GW). It is clear that 

every minimal subgroup of f t2(P n G X ) / ~ I ( P  n G At) is permutable in 

~2(P n GX)(a}/f~l(P n GX). Noticing that ~t2(P n GAr)(a}/f~l(P N G X) is a 

maximal subgroup of G2/f t l (P N G A;) and using the same arguments as in Case 

1 we may have that [ft2(P n GAr)/~I(P N GAr), Q~I(P  n G X ) / ~ i ( P  N Gnr)] ---- 1 

and therefore Q stabilizes the chain of subgroups 

1 _< ~ l ( P N G  X) _< f t 2 (P~GH) .  

By [G, Theorem 5.3.2], [~2(P n GN),Q] =- 1. It follows from [H, Satz 4.5.12] 

that [P n G X, Q] = 1 and therefore Q is normal in G, a contradiction. 

The proof of the theorem is complete. I 

COROLLARY 3.2: Let p be the smallest prime dividing the order of a group G 

and let P be a Sylow p-subgroup of G. If  every subgroup of P D G X with order 

p is permutable in No(P)  and, when p -- 2, either every cyclic subgroup of 

P n G Ar with order 4 is permutable in No(P)  or P is quaternion-free, then G is 

p-nilpotent. 

4. Applications 

As we have mentioned above, Buckley showed that a group G of odd order is 

supersolvable if each minimal subgroup of G is normal in G. Now we generalize 

this result. We replace not only the normal assumption of minimal subgroups by 

the permutable assumption of minimal subgroups, but also all minimal subgroups 

of G by some minimal subgroups of G. In fact, our result is more general. 

THEOREM 4.1: Let .~" be a saturated formation containing the class/4 of super- 

solvable groups. Let N be a normal subgroup of a group G such that G / N  is in 

.~. If  for every prime p dividing the order of N and for every Sylow p-subgroup 

P of N, every subgroup of prime order o f P  N G Ar is permutable in NG(P) and, 

when p = 2, either every cyclic subgroup of order 4 of P N G Ar is permutable in 

No(P)  or P is quaternion-free, then G is in 5 .  

Proof: Assume that the theorem is false and let G be a counterexample of 

minimal order. By our Theorem 3.1, we know that N is a Sylow tower group of 

supersolvable type. Thus, if p is the largest prime dividing the order of N and 
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P is a Sylow p-subgroup of N, then P must be normal in G. Now, we consider 

the quotient group G/P. Then G/P has a normal subgroup N / P  such that 

(G/P)/(N/P) ~_ G/N c .T. If H/P is a Sylow q-subgroup of N/P, then q • p 

and we may choose a Sylow q-subgroup Q of N such that H = PQ. Moreover, 

(G/P) X = G~VP/P. Let Y be an element of order q or 4 in (QP/P) ~ (G/P) X. 
Then Y = xP for some element x E Q N G at. By hypothesis, (z) is permutable in 

No(Q). It follows that @-) is permutable in Nc./p(QP/P) = Na(Q)P/P. Hence 

G/P satisfies the hypotheses of our theorem and therefore the minimality of G 

implies that G/P is in ~'. This also implies that every subgroup of prime order 

of P ~ G H is permutable in G and, when p = 2, either every subgroup of order 

4 of P n G N is pernmtable in G or P is quaternion-free. 

Since G y _< G N and G is not in ~-, we see that 1 ¢ G ~- is contained in 

P Cl G ~" and G ~- is a p-group. Now by [B, Theorem 3.5], there exists a maximal 

subgroup M of G such that G = MF~(G), where F~(G) = Soc(G modqS(G)) and 

G~ corea(M) is not in 3 c. Then G = MG F and therefore G = MF(G) since G ~- 

is a p-group, where F(G) is the Fitting subgroup of G. It is now clear that M 

satisfies the hypotheses of our theorem for its normal subgroup M n P. Hence, 

by the nfinimality of G, we have that M belongs to )r. 

Now, by Lemma 2.3, G y has exponent p when p ¢ 2 and exponent at most 4 

when p = 2. If G ~- is an elementary abelian group, then G ~- is a minimal normal 

subgroup of G. It is clear that G ~- is not. contained in the Frattini subgroup of G. 

Thus there is a maximal subgroup L of G such that G = LG 3= and L N G ~- = 1. 

For any minimal subgroup A of G ~-, by our hypotheses, A is permutable in 

G = Na(P) and therefore LA is a subgroup of G. It follows that G ~- = A is a 

cyclic group of order p. 

We now suppose that G ~- is not an elementary abelian group. Then (G~-) ~ = 

Z(G ~) = q~(G ~-) is an elementary abelian group by Lemma 2.3. For any min- 

imal subgroup A of G~/(G~=) ~, there exists a subgroup A of G ~- such that 

-A = A(GJ:)'/(GY)q If A is of prime order, then, noticing that 

(CT /(C'r) ') n (O(C)/(G-r) 1) = 1 

and by using the above arguments, we can prove that A is normal in G/(GT)q 
The minimality of GT/(Gf) ' implies that A = GY/(GF) ', and therefore 

G:~/(GT) 1 is a cyclic group of prime order. Hence the remaining case is when 

p = 2 and every element generating G y is of order 4. It follows immediately that 

f~l(G 7) = (G~-) ~ = Z(G y) = qS(G~-). For any minimal subgroup A of f~a(G ~-) 

and any Sylow q-subgroup Q of G (q ¢ 2), by our hypotheses, QA = AQ is a 
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subgroup of ~I(GJ:)Q. It follows that  A is a normal subgroup of QA and there- 

fore A < Z(AQ).  Hence every 2~-element of G acts (by conjugation) trivially on 

~)I(GY). If  P is quaternion-free, by [D, Lemma 2.15] every 2~-element of G acts 

trivially on G ~-. Since G Y / ( G T )  ' is a chief factor of G, we see that  GT/(GJ:) ' 

is a cyclic group of prime order. If every cyclic subgroup of order 4 of P N G ~v 

is permutable in NG(P) = G, then, using the above arguments, we can also 

prove that  G Y / ( G T )  ~ is a cyclic group of prime order. We have now shown that  

in any case, G~:/(G'r) r is always a cyclic group of prime order. Noticing that  

G t / ( G Y )  ' is G-isomorphic to Soc(G/coreG(M)) ,  it follows that  G/corea (M)  is 

supersolvable, a contradiction. Thus, our proof is completed. | 

Remark 4.2: It  is noted that  Theorem 4.1 is not true if the saturated formation 

does not contain b/. For example, if5 r is the saturated formation of all nilpotent 

groups, then the symmetric group of degree three is a counterexample. 

Remark 4.3: I t  is also noted that  Theorem 4.1 is generally not true for non- 

saturated formations. To see this remark, we let 5 r be a formation composed by 

all groups G such that  G u is elementary abelian. Clearly, ~- >_ U, but J- is not 

saturated. Let G = SL(2,3)  and H = Z(G).  Then G / H  is isomorphic to the 

alternating group of degree four and thereby G / H  C :F. But G does not belong 

to 9 ~. This illustrates the situation. 

COROLLARY 4.4: Let G be a group. I f  for every prime p dividing the order of 

G and for every Sylow p-subgroup P of G, every subgroup of prime order of 

P N G ~v is permutable in NG(P) and, when p = 2, either every cyclic subgroup 

of order 4 of P n G x is permutable in NG(P) or P is quaternion-free, then G is 

supersolvable. 

Using arguments similar to those in the proof of [BG, Theorem 3], we may 

prove the following 

THEOREM 4.5: Let M be a nilpotent maximal subgroup of a group G and let 

P be a Sylow 2-subgroup of M.  I f  every subgroup of P N G ~v with order 2 

is permutable in P and either P is quaternion-free or every cyclic subgroup of 

P N G X with order 4 is permutable in P, then G is solvable. 
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